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1 Nucleon-nucleon potential from holography

The main goal of this paper is to extract the interaction between a pair of nucleons in string

theoretical framework of holography, and consider possible bound state. We will exclusively

work with the D4-D8 model [1], which involves a large number of colors Nc, large ’t Hooft

coupling λ, and quenching of fermions. Given many approximations, the result should be

approached with much caution, yet we have seen often that such holographic approaches

generating realistic numbers. Ref. [2, 3], for instance, gave detailed predictions on glueball

spectrum of pure QCD, some of which were successfully compared to lattice simulation.

The D4-D8 model has been particularly successful in encoding the spin 1 meson sector

coupled with pseudo-Goldstone bosons, and equally successful in describing baryons and

the interaction between these two sectors [1, 4–6]. A natural extension of the model
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would be a study of the nucleon-nucleon potential. The holographic baryon in the D4-D8

model is similar to the Skyrmion of chiral perturbation theory. In fact, one can view the

holographic baryon as a direct uplift of the Skyrmion in the holographic sense, which has

a simple interpretation as instanton solitons with certain Coulombic electric hair. The size

of the soliton is known to be ≃ 9.6/
√
λMKK [4, 5], where MKK is some natural unit in the

D4-D8 model, comparable to the lightest vector meson mass.

Given this, one can approach the problem of nucleon potential in two different manners.

The first, which seems conceptually most natural, is to find a “suitable” family of two-

soliton trial configuration, emulating a pair of baryons (nucleons) taken apart from each

other, and evaluate the resulting energy. After subtracting twice the mass of the baryon

(nucleon), this would give us a potential. However, this is much easier said than done.

The main problem with approaches like this is that finding a “suitable” configuration is all

but impossible for complicated solitons like this. As we will see later, the baryon-baryon

interaction scales as Nc/λ whereas their masses scale as Ncλ, so the interaction accounts

for a very small part of the two body energy. Unless our trial configuration is extremely

fine-tuned, energy cost due to any slight error could easily overrun the interaction energy,

resulting in a nonsensical answer.1

Sometimes, however, the interaction energy grows substantially and the physical mech-

anism responsible for the interaction is easy to single out. For our solitonic baryon this

happens when the two baryons approach each other to a distance comparable to their in-

dividual soliton size. The leading contribution comes from the fact that each unit soliton

comes with Coulombic hair. Each baryon has Nc unit of charges with the squared electric

coupling ∼ 1/Ncλ, so one finds a repulsive core interaction of type

Vcore ∼
Nc

λ

1

MKKr2
(1.1)

with r2 ≃ λ/M2
KK or less. Here r denotes the mutual separation of the two baryons and

the 1/r2 behavior originates from the fact that the soliton lives in approximate R4+1.

Nevertheless, this short distance behavior gives little insight to some common questions

like how bound states, such as deuteron and other nuclei, form. In fact, it is not clear

whether there is a realistic regime where the precise functional behavior of the repulsive

core such as this can be measured, since, at short distances, the asymptotic freedom takes

over and nucleons begin to see each other as collection of partons. Also the D4-D8 model,

or any other holographic model based on gravity only, becomes somewhat dubious in the

high energy regime well beyond MKK because of many non-QCD modes that begin to

populate at MKK and higher.

If one is interested in longer distances where the interaction is potentially attractive

and where, more to the point, the validity of the present approximation can meet real

QCD, we must consider a different approach.2 When the inter-baryon distance is larger

that the sizes of the baryons, the baryons can be taken to be a point-like object. In such

1In fact, approaches of this kind have been already tried for Skyrmions with mixed results [7, 8].
2The reverse is also true. One should not be tempted to use the second approach for the short-distance

interaction, since, with much more energy involved, the deformation of individual solitons is inevitable.
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situation, the interactions can be all ascribed to exchange of light particles, namely mesons.

Instead of trying to understand intricate structure of multi-solitons, one merely computes

Feynman diagrams using (cubic) interaction vertices involving baryon currents and light

mesons, such as pions π and rho mesons ρ. Typical vertices that enter this computation are

N̄ (x)Γφ(x)N (x)

for the (pseudo-)scalar mesons, and

N̄ (x)γµΓvµ(x)N (x), N̄ (x)γµνΓ∂µvν(x)N (x)

for (axial-)vector mesons, with Γ = 1 or γ5. From the D4-D8 holographic QCD, coupling

constants for these vertices are all precisely derivable, at least in the large λ and large Nc

limit. Then the problem of finding nucleon-nucleon potential becomes a matter of comput-

ing summing up tree-level Feynman diagrams due to various meson exchanges [9–11].3

Fortunately, the basic framework for the relevant meson-nucleon interaction has been

worked out in great detail [4], where all nucleon-meson couplings can be derived very

precisely. Some of the leading interaction strengths, such as the leading axial coupling to

pions gA and vector meson couplings gρNN and gωNN , have been computed and successfully

compared to experimental data. In this note, we will take this holographic formulation of

nucleon-meson interaction and compute the nucleon-nucleon potential from exchange of

mesons. For distances r ≫
√
λ/MKK, we find the leading potential of type

Vexchange ∼ Nc

λ
(· · · ) , (1.2)

where the ellipsis contains terms of order 1/r through 1/M2
KKr

3 possibly with exponential

damping factor due to vector meson masses and also with various spin/isospin factors.

Subleading contributions start at 1/Ncλ, but could be relevant in the real QCD regime of

Nc = 3.

However, this is not to say that the underlying mechanism for the interaction energy

is different from what one would have obtained from the soliton approach if the latter were

possible at all. Rather, the tree diagrams involving mesons and baryons keep track of the

classical effect on one baryon by another far away, and vice versa, and extract the classical

interaction energy automatically. This is possible because the baryons are really solitons

made out of these mesons, to begin with.

In section 2 and 3, we give a bare-bone review of D4-D8 holographic QCD and the

solitonic baryon thereof. In section 4, we derive relevant meson-nucleon couplings with

emphasis on how they scale with λ and Nc. In doing so, we will learn that certain derivative

coupling of vector mesons, sometimes referred to as the tensor coupling, can be dominant

over the usual minimal type couplings. We extract the values of these couplings in the

large Nc limit.

Section 5 and 6 summarize the resulting nucleon-nucleon potential, after suitable trun-

cation by mass, for large Nc and finite Nc respectively. It will become clear that the leading

3See ref. [12] for a comprehensive review in the conventional approach to QCD.
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contributions come from exchange of π, ω, and axial-vector mesons via the minimal cou-

plings, and from exchange of ρ mesons via the tensor coupling. ω meson exchange is

universally repulsive and represents a remnant of the core repulsion we mentioned earlier,

while ρ exchange off-set much of the pion exchange. For very short distances ∼ /
√
λMKK,

where the current approach become unreliable due to backreaction of the individual soli-

tons, the potential turns universally repulsive as ∼ 1/r2 as noted above.

Section 7 gives a simplistic view of deuteron emerging from the large Nc form of the

potential, and we close with a summary in section 8.

2 A D4-D8 holographic QCD

One starts with a stack of D4 branes which is compactified on a thermal circle [13], where

one requires anti-periodic boundary condition on all fermions along the circle. The purpose

of having a spatial “thermal” circle is to give mass to the fermionic superpartners and thus

break supersymmetry. By putting Nc D4 branes on a thermal circle, we obtains pure U(Nc)

Yang-Mills theory in the remaining noncompact 3 + 1 dimensions. We are interested in

large Nc limit, so the U(1) part can be safely ignored, and we may pretend that we are

studying SU(Nc) theory instead. One then extrapolates the AdS/CFT [14] to this non-

conformal case, which states that, instead of studying strongly coupled large Nc Yang-Mills

theory, one may look at its dual closed string theory. The correct dual geometry is known

to be [15]

ds2 =

(

U

R

)3/2
(

ηµνdx
µdxν + f(U)dτ2

)

+

(

R

U

)3/2( dU2

f(U)
+ U2dΩ2

4

)

, (2.1)

with R3 = πgsNcl
3
s and f(U) = 1−U3

KK/U
3. The topology of the spacetime isR3+1×D×S4,

with the coordinate τ labeling the azimuthal angle of the disk D, with τ = τ + δτ and

δτ = 4πR3/2/(3U
1/2
KK ). The circle parameterized by τ is the thermal circle. The dilaton is

e−Φ =
1

gs

(

R

U

)3/4

, (2.2)

while the antisymmetric Ramond-Ramond background field C3 is such that dC3 carries Nc

unit of flux along S4.

To add mesons, one introduces NF D8 branes, which share the coordinates xµ with the

above D4 branes [1] and are transverse to the thermal circle τ . If we had not traded off the

Nc D4 branes in favor of the dual gravity theory, this would have allowed massless quarks

as open strings ending on both the D4 and the D8 branes. As the D4’s are replaced by the

dual geometry, however, the 4-8 open strings have to be paired up into 8-8 open strings,

the lightest of which belongs to a U(NF ) gauge field, and these are naturally identified as

bi-quark mesons. The U(NF ) gauge theory on D8 branes has the action

− 4π2l4sµ8

8

∫

√

−h8+1 e
−Φ trF2 + µ8

∫

C3 ∧ Tr e2πα′F , (2.3)
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where the contraction is via the induced metric of D8 and µp = 2π/(2πls)
p+1 with l2s = α′.

The induced metric on the D8 brane is

h8+1 =
U3/2(w)

R3/2

(

dw2 + ηµνdx
µdxν

)

+
R3/2

U1/2(w)
dΩ2

4 , (2.4)

after we trade off the holographic (or radial) coordinate U in favor of a conformal one w as4

w =

∫ U

UKK

R3/2dU ′/
√

U ′3 − U3
KK , (2.5)

which resides in a finite interval of length ∼ O(1/MKK) where MKK ≡ 3U
1/2
KK/2R

3/2 . Thus,

the topology of the D8 worldvolume is R3+1 × I × S4. The nominal Yang-Mills coupling

g2
YM is related to the other parameters as

g2
YM = 2πgsMKKls . (2.6)

The low energy parameters of this holographic theory are MKK and λ, which together with

Nc set all the physical scales such as the QCD scale and the pion decay constant.

In the low energy limit, this is reduced to a five-dimensional Yang-Mills theory with a

Chern-Simons term

− 1

4

∫

4+1

1

e(w)2

√

−h4+1 trF2 +
Nc

24π2

∫

4+1
ω5(A) , (2.7)

where the position-dependent Yang-Mills coupling of this flavor gauge theory is

1

e(w)2
=

e−ΦVS4

2π(2πls)5
=

λNc

108π3
MKK

U(w)

UKK
, (2.8)

with VS4 the position-dependent volume of S4. The Chern-Simons coupling with dω5(A) =

trF3 arises because
∫

S4 dC3 ∼ Nc.

The usual Kaluza-Klein reduction results in an infinite number of vector fields, whose

action can be derived explicitly as

∫

dx4 L =

∫

dx4
∑

n≥1

tr

{

1

2
F (n)

µν Fµν(n) +m2
(n)v

(n)
µ vµ(n)

}

+ · · · , (2.9)

with F (n)
µν = ∂µv

(n)
ν − ∂νv

(n)
µ . When we decomposed U(NF ) into SU(NF ) and U(1), the

natural gauge generators are normalized as trT 2 = 1/2, which explains 1/2 in front of

4This w coordinate is related to another convenient choice of radial coordinate z

U3 = U3
KK + UKKz2 ,

as

d(wMKK) =

„

UKK

U

«2
dz

UKK
=

1

(1 + z2/U2
KK)2/3

d(z/UKK).

– 5 –
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the kinetic term.5 These fields can be seen as non-zero modes in the decomposition of the

gauge field, which in the (somewhat illegal but convenient) axial gauge Aw = 0 is

Aµ(x;w) = iαµ(x)ψ(0)(w) + iβµ(x) +
∑

n≥1

v(n)
µ (x)ψ(n)(w) . (2.10)

The eigenfunctions ψ(n) obey the orthonormality conditions,

∫

dw
1

2e(w)2
ψ(n)(w)∗ψ(m)(w) = δnm , (2.11)

for n,m ≥ 1. For later purpose, it is useful to introduce

ψ̂(n)(ŵ) =

√

216π3

λNc
ψ(n)(w) (2.12)

whose form is insensitive to λNc. Here and in what follows, ŵ ≡ wMKK. Because A
has a specific parity, the parity of vn’s are determined by the parity of the eigenfunctions

ψ(n)(w) along the fifth direction. Since the parity of any one-dimensional eigenvalue system

alternates, an alternating tower of vector and axial-vector fields emerge as the masses m(n)

of the KK modes increase.

To understand this zero mode part, captured in part by the nonnormalizable eigen-

function, ψ(0). it is better to give up the axial gauge and consider the Wilson line,

U(x) = ei
R

w
A(x,w) , (2.13)

which, as the notation suggests, one identifies with the pion field U(x) = e2iπ(x)/fπ . Upon

taking a singular gauge transformation back to Aw = 0, one finds that it is related to α

and β as

αµ(x) ≡ {U−1/2, ∂µU
1/2} , 2βµ(x) ≡ [U−1/2, ∂µU

1/2] . (2.14)

Truncating to this zero mode sector reproduces a Skyrme Lagrangian of pions [16] as a

dimensional reduction of the five-dimensional Yang-Mills action,

∫

dx4

(

f2
π

4
tr
(

U−1∂µU
)2

+
1

32e2Skyrme

tr
[

U−1∂µU,U
−1∂νU

]2

)

, (2.15)

with f2
π = (g2

YMNc)NcM
2
KK/54π

4 and 1/e2Skyrme ≃ 61(g2
YMNc)Nc/54π

7. No other quartic

terms arise, nor do we find higher order terms in derivative, although we do recover the

Wess-Zumino-Witten term from the Chern-Simons term [1]. To compare against actual

QCD, we must fix λ = g2
YMNc ≃ 17 and MKK ≃ 0.94 GeV to fit both the pion decay

constant fπ and the mass of the first vector meson.

5In the published and all prior versions of ref. [6], the kinetic terms of vector and axial-vector mesons

were normalized with 1/4 in front of the kinetic term before the trace. With canonical normalization for

(axial-)vector mesons, the cubic couplings involving a vector or an axial-vector meson there should be all

multiplied by
√

2.

– 6 –
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3 Holographic baryons

The five-dimensional effective action for the U(NF ) gauge field in eq. (2.7) admits solitons

which carry a Pontryagin number

1

8π2

∫

R3×I
trF ∧ F = k , (3.1)

with integral k. We denoted by F the non-Abelian part of F (and similarly later, A for

the non-Abelian part of A). The smallest unit with k = 1 carries quantum numbers of the

unit baryon.

The easiest way to see this identification is to relate it to the Skyrmion [16] of chiral

perturbation theory, which is the natural object in the large Nc limit [17] of QCD. Recall

that both instantons and Skyrmions are labeled by the third homotopy group π3 of a group

manifold, which is the integer for any semi-simple Lie group manifold G. For the Skyrmion,

the winding number shows up in the classification of maps

U(x) : R3 → SU(NF = 2) , (3.2)

while for the instanton it shows up as winding number at infinity,

A(x,w → ±∞) = ig±(x)†dg±(x) , (3.3)

with

g−(x)†g+(x) : R3 → SU(NF ) . (3.4)

The relationship between the two types of the soliton is immediate [18] once we identify

U(x) = g−(x)†g+(x) . (3.5)

Therefore, the instanton soliton in five dimensions is the holographic image of the

Skyrmions in four dimensions. We will call it the instanton soliton.

Unlike the usual Yang-Mills theory in flat R4 background, the effective action has a

position-dependent inverse Yang-Mills coupling 1/e(w)2 which is a monotonically increasing

function of |w|. Since the Pontryagin density contributes to the action as multiplied by

1/e(w)2, this tends to position the soliton near w = 0 and also shrink it for the same

reason. The F 2 energy of a trial configuration with size ρ can be estimated easily in the

small ρ limit,6

EPontryagin =
λNc

27π
MKK ×

(

1 +
1

6
M2

KKρ
2 + · · ·

)

, (3.6)

which clearly shows that the energy from the kinetic term increases with ρ. This by itself

would collapse the soliton to a point-like one, making further analysis impossible.

6 The estimate of energy here takes into account the spread of the instanton density D(xi, w) ∼ ρ4/(r2 +

w2 + ρ2)4, but ignores the deviation from the flat geometry along the four spatial directions.
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A second difference comes from the presence of the additional Chern-Simons term

∼ trA ∧ F ∧ F , whereby the Pontryagin density F ∧ F sources some of the gauge field A
minimally. This electric charge density costs the Coulombic energy

ECoulomb ≃ 1

2
× e(0)2N2

c

10π2ρ2
+ · · · , (3.7)

again in the limit of ρMKK ≪ 1. This Coulombic energy tends to favor larger soliton size,

which competes against the shrinking force due to EPontryagin.

The combined energy is minimized at [4–6]

ρbaryon ≃ (2 · 37 · π2/5)1/4

MKK

√
λ

, (3.8)

and the classical mass of the stabilized soliton is

mclassical
B = (EPontryagin + ECoulomb)

∣

∣

∣

∣

minimum

=
λNc

27π
MKK ×

(

1 +

√

2 · 35 · π2/5

λ
+ · · ·

)

. (3.9)

As was mentioned above, the size ρbaryon is significantly smaller than ∼ 1/MKK. We

have a classical soliton whose size is a lot smaller than the fundamental scale of the

effective theory.7

For the sake of simplicity, and also because the quarks in this model have no bare mass,

we will take NF = 2 for the rest of the note. A unit instanton soliton in question comes with

six collective coordinates. Three correspond to the position in R3, and three correspond

to the gauge angles in SU(NF = 2). If the soliton is small enough (ρMKK ≪ 1), there

exists approximate symmetries SO(4) = SU(2)+ ×SU(2)− at w = 0, so the total rotational

symmetry of a small solution at origin is SU(NF = 2) × SU(2)+ × SU(2)−. The instanton

can be rotated by a conjugate SU(2) action as,

F → S†FS , (3.10)

with any 2 × 2 special unitary matrices S which span S3. Then, the quantization of the

soliton is a matter of finding eigenstates of free and nonrelativistic nonlinear sigma-model

onto S3 [20, 21]. Under the approximate symmetry SU(NF = 2) × SU(2)+ × SU(2)−, the

quantized instantons are in [22]

(2s + 1; 2s + 1; 1) , (3.11)

while the quantized anti-instantons are in

(2s + 1; 1; 2s + 1) . (3.12)

Possible values for s are integers and half-integers. However, we are eventually interested

in Nc = 3, in which case spins and isospins are naturally half-integral. Thus we will

subsequently consider the case of s = 1/2 states only, which are nucleons. Exciting these

isospin comes at energy cost.

7This tendency of the baryonic soliton shrinking to smaller size can be understood as being due to the

backreaction of vector and axial vector mesons on the conventional Skyrmion [19].
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4 Nucleon-meson interactions from holography

4.1 General formulation

The starting point is the five-dimensional effective action of isospin 1/2 baryons. With

γ0 =

(

0 −1

1 0

)

, γi =

(

0 σi

σi 0

)

, γ5 =

(

1 0

0 −1

)

, (4.1)

we have the following five-dimensional effective action,

∫

d4xdw

[

−iB̄γmDmB − imB(w)B̄B +
2π2ρ2

baryon

3e2(w)
B̄γmnFmnB

]

−
∫

d4xdw
1

4e2(w)
trFmnFmn , (4.2)

where the covariant derivative is defined as Dm = ∂m − i(NcAU(1)
m + Am) with Am in

the fundamental representation of SU(NF = 2). The position-dependent mass mB(w) ≃
4π2/e(w)2 × (1 +O(1/λ)) is a very sharp increasing function of |w|, such that in the large

Nc and large λ limit, the baryon wavefunction is effectively localized at w = 0. This is the

limit where the above effective action is trustworthy.

The vertex B̄FB has the coefficient function, about which we only know the central

value precisely as
2π2ρ2

baryon

3e2(0)
=

Nc√
30

· 1

MKK
, (4.3)

which shows that this second interaction vertex can be actually dominant over the minimal

coupling, although it looks subleading in the derivative expansion. As it turns out, this

term is dominant for cubic vertex processes involving pions or axial vector mesons [6].

How to continue this coefficient function to w 6= 0 is unknown. However, for all large λNc

estimate of nucleon-meson interaction terms, only this central value matters. We chose to

use the specific form above for a later convenience but it is important to remind ourselves

that the precise choice does not matter.

To obtain interactions between nucleons and mesons, we mode expand B(xµ, w) =

B+(xµ)f+(w) +B−(xµ)f−(w) where γ5B± = ±B± and the profile functions f±(w) satisfy

∂wf+(w) +mB(w)f+(w) = mN f−(w) ,

−∂wf−(w) +mB(w)f−(w) = mN f+(w) , (4.4)

in the range w ∈ [−wmax, wmax]. The 4D Dirac field for the nucleon is then reconstructed as

N = B+ +B− , (4.5)

The eigenvalue mN is the mass of the nucleon mode N (x). Approximating mB(w) ≃
mclassical

B (1 + (wMKK)2/3 + · · · ), we find

mN ≃ mclassical
B +O(MKK) , (4.6)
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so for large λ and large Nc limit, we can take mN ≃ mclassical
B ≃ λNcMKK/27π. The

eigenfunctions f±(w) are also normalized as
∫ wmax

−wmax

dw |f+(w)|2 =

∫ wmax

−wmax

dw |f−(w)|2 = 1 , (4.7)

Note that there is a 1-1 mapping of eigenmodes with f−(w) = ±f+(−w), where the sign

choice is tied to the sign choice for mN . Due to the asymmetry under w → −w, f+(w)

tends to shift to the positive w side, and the opposite happens for f−(w). In this note, we

will take the convention where f−(w) = f+(−w). Both can be taken to be real.

Inserting this into the action (4.2), we find the following structure of the four-

dimensional nucleon action
∫

dx4 L4 =

∫

dx4
(

−iN̄γµ∂µN − imN N̄N + Lvector + Laxial

)

, (4.8)

where we have, schematically, the vector-like cubic couplings

Lvector = −iN̄γµβµN −
∑

k≥1

g
(k)
V N̄γµv(2k−1)

µ N +
∑

k≥1

g
(k)
dV N̄γµν∂µv

(2k−1)
ν N , (4.9)

and the axial cubic couplings to axial mesons,

Laxial = − igA

2
N̄γµγ5αµN −

∑

k≥1

g
(k)
A N̄γµγ5v(2k)

µ N +
∑

k≥1

g
(k)
dA N̄γµνγ5∂µv

(2k)
ν N . (4.10)

For instance, gA is the axial coupling to pions, whose leading cubic coupling to N ap-

pears via

αSU(2)
µ = {ξ−1, ∂µξ}SU(2) =

2i

fπ
∂µπ + · · · =

2i

fπ
∂µπ

a τ
a

2
+ · · · . (4.11)

We will ignore quartic couplings involving more than one spin 1 mesons.

We must recall an important detail which is suppressed in the notation above, regarding

the differences between the isospin singlet mesons and the triplet mesons. These two are

packaged into the five-dimensional gauge field A as the trace part and the SU(2) part,

respectively. For instance, the vector mesons would show up in A as

v(2k−1)
µ =

(

1/2 0

0 1/2

)

ω(k)
µ + ρ(k)a

µ

τa

2
, (4.12)

where ω’s and ρ’s are canonically normalized. A crucial point is that the representation

of A that appears in the baryon effective action is different from this. Instead, the vector

meson that enters the baryon vertex has the form

v(2k−1)
µ =

(

Nc/2 0

0 Nc/2

)

ω(k)
µ + ρ(k)a

µ

τa

2
, (4.13)

implying the isosinglet has a relative enhancement factor of Nc. The second difference can

be seen in the fact that only the isotriplets appear in the B̄FB vertex in five dimensions.

In any case, each and every cubic coupling above comes in two different varieties, ones for

isosinglet mesons, such as η and ω, and those for isotriplet mesons, such as π and ρ.
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4.2 Structure of the cubic couplings

All the coupling constants g
(k)
V,A, g

(k)
dV,dA, and gA are calculated by suitable wave-function

overlap integrals involving f± and ψ(n)’s [6].8 Let us consider the general structure. Con-

tributions from the minimal coupling, B̄γµAµB, has the form,

A±
n ≡

∫ wmax

−wmax

dw |f±(w)|2 ψ(n)(w) . (4.14)

A±
n ’s contribute to dimension four vertices, most notably N̄γµρµN , N̄γµωµN , and their

axial vector counterparts. They also contribute to N̄γµγ5∂µπN , although only as a sub-

leading contribution.

Contributions from B̄FB have the general forms

B±
n ≡

∫ wmax

−wmax

dw

(

2π2ρ2
baryon

3e(w)2

)

f∓(w)∗f±(w)ψ(n)(w) , (4.15)

for B̄γµνFµνB, and

C±
n ≡

∫ wmax

−wmax

dw

(

2π2ρ2
baryon

3e(w)2

)

|f±(w)|2 ∂wψ(n)(w) , (4.16)

for B̄γ5µF5µB. The latter two sets contribute only to the isotriplets. B±
n ’s contribute to

the derivative couplings such as N̄γµν∂µρνN . C±
n ’s generate the large Nc leading contri-

butions to vertices involving isotriplet axial mesons, such as N̄γµγ5∂µπN and the minimal

coupling to the axial vectors N̄γµγ5aµN . C’s also contribute subleading pieces to vertices

like N̄γµρµN .

From these, we have the following cubic couplings for isospin triplet mesons,

gtriplet
A = 4C+

0 + 2A+
0 ,

g
(k)triplet
V = A+

2k−1 + 2C+
2k−1 ,

g
(k)triplet
A = 2C+

2k +A+
2k ,

g
(k)triplet
dV = 2B+

2k−1 ,

g
(k)triplet
dA = 2B+

2k , (4.17)

where the mesons in these vertices are in the form such as α
(SU(2)
µ = 2i/fπ×(∂µπ

aτa/2) and

ρa
µτ

a/2. As we will see shortly, the second terms for the first three lines are subleading in

the λNc limit, so that we actually have gtriplet
A ≃ 4C+

0 , g
(k)triplet
V ≃ A+

2k−1, g
(k)triplet
A ≃ 2C+

2k.

Of these, g
(k)triplet
dA = 0 identically, implying that axial vectors have no derivative coupling

in our approximation.

8A related but different approach to these couplings was later formulated in ref. [23] which adopted the

conventional methods used for Skyrmions. Since both are based on the classical solitons quantized over the

moduli space, the end results should be equivalent.
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For isospin singlets, B and C contributions are absent so we have

gsinglet
A = 2A+

0 ,

g
(k)singlet
V = A+

2k−1 ,

g
(k)singlet
A = A+

2k . (4.18)

The mesons in these vertices are in the form such as α
U(1)
µ = 2i/fπ × ((Nc/2)∂µη

′)

and (Nc/2)ωµ.

Remarkably, even before we go into any detail, we have a prediction that all isospin

singlet vectors and all axial-vectors have no derivative coupling in this approximation.

4.3 Scaling of the cubic couplings

The key fact that allows us to extract large λNc behavior of cubic couplings is thatmB(w) ∼
1/e(w)2 is proportional to λNc. Relative to the mesonic eigenfunctions ψ(n), f± becomes

more and more concentrated at w = 0. The two wavefunctions are slightly off-set from the

center by the amount ∼ ±1/(MKKλNc) with the width of order ∼ 1/(MKK

√
λNc ). This

allows us to approximate f2
± or f+f− by a delta function at origin in wavefunction overlap

integrals such as A±
n provided that the integrand does not vanish near w = 0.

For example, it is easy to see that

A±
2k−1 → ψ(2k−1)(0) =

√

216π3

λNc
ψ̂(2k−1)(ŵ = 0) (4.19)

in the large λNc limit. Here we also used the fact that ψ̂(n)(ŵ = wMKK) for n ≥ 1 obey

∫

dŵ
e2(0)

e2(w)
ψ̂(n)(ŵ)ψ̂(m)(ŵ) = δnm (4.20)

and are independent of λNc and ofMKK. In particular, numerically we find ψ̂(1)(0) ≃ 0.597.

This number is an important ingredient of the low energy nucleon-nucleon potential as we

will find later.

A±
2k’s, whose integrands vanish at w = 0, take more care. Using reality and the

eigenmode equation for f±,

A±
2k =

1

mN

∫

w
f±(w) (∓∂wf∓(w) +mB(w)f∓(w))ψ(2k)(w) . (4.21)

Since ψ(2k) is odd, the leading contribution arises from the derivative piece, and we find

A±
2k → ±MKK

2mN

√

216π3

λNc
ψ̂(2k)

′(ŵ = 0) , (4.22)

which scales as 1/(λNc)
3/2. Note that |A2k−1| ∼ (λNc)

−1/2 ≫ |A2k| ∼ (λNc)
−3/2.

Evaluation of B’s is simpler because it involves f+f− which is an even function, so that

B±
n =

2π2ρ2
baryon

3

∫

w

1

e(w)2
f∓(w)∗f±(w)ψ(n)(w) . (4.23)
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With even ψ’s, this gives

B±
2k−1 →

2π2ρ2
baryon

3e(0)2

√

216π3

λNc
ψ̂(2k−1)(0) , (4.24)

whereas the odd cases vanish identically

B±
2k = 0 . (4.25)

Evaluation of C±
n proceeds similarly as A±

n . Using the equation of motion for f± again

and recalling that
2π2ρ2

baryon

3e(w)2
≃
ρ2
baryon

6
×mB(w) , (4.26)

we find

C±
n =

ρ2
baryon

6

∫

w
f± (∓∂wf± +mN f∓) ∂wψ(n)(w) . (4.27)

This gives

C±
2k−1 → ±

ρ2
baryon

12
M2

KK

√

216π3

λNc
ψ̂(2k−1)

′′(0) ,

C±
2k →

ρ2
baryon

6
mNMKK

√

216π3

λNc
ψ̂(2k)

′(0) . (4.28)

Also note that |C2k| ∼
√

Nc/λ ≫ |C2k−1| ∼ 1/
√
λ3Nc.

The case of n = 0 requires special attention since ψ(0)(w) is not normalizable and only

its derivative, which is normalizable, appears in the physical quantities. The conventional

choice is such that ∂ŵψ(0)(0) = 1/π, which is necessary for the familiar chiral Lagrangian

to emerge from this formulation. With this, we find

A±
0 → ±MKK

2mN

1

π
, (4.29)

and

B±
0 = 0 . (4.30)

Finally, with the specific functional form ∼ 1/e(w)2 of the B̄FB coefficient, we have an

analytical result,

C±
0 =

ρ2
baryonmNMKK

6π
=

Nc√
30

1

π
. (4.31)

These enter pion-nucleon couplings, which come with additional factors of 1/fπ for

each pion.

Note that some of the above integrals have signs sensitive to the choice of f±. Since

f± are wavefunctions specific to the chiral and the anti-chiral spinors, these ± signs for

the values of A±
2k and C±

2k−1 have the net effective of introducing a γ5 to the vertex as

a part of dimensional reduction process, in addition to the existing Dirac matrices of the

vertices in (4.2). This is already manifest in how these coefficients contributes to the cubic

couplings in eq. (4.17), (4.18).

– 13 –



J
H
E
P
0
4
(
2
0
0
9
)
0
8
6

4.4 Pseudo-scalar mesons: π and η′

Starting with

− igA

2
N̄γµγ5αµN , (4.32)

we restore the isotriplet and the isosinglet mesons and find

gtriplet
A

2fπ
N̄γµγ5∂µ(πaτa)N +

gsinglet
A Nc

2fπ
N̄γµγ5∂µη

′N . (4.33)

Since we will be considering Nf = 2, the distinction between η and η′ becomes a bit

ambiguous. Here η′ denotes the trace part of the pseudo-scalar, regardless of the number

of flavors. In turn, this is equivalent to

−
(

gtriplet
A

2fπ
× 2mN

)

N̄γ5(πaτa)N −
(

gsinglet
A Nc

2fπ
× 2mN

)

N̄γ5η′N . (4.34)

4.5 Vector mesons: ρ and ω

We will denote the isotriplet vectors by ρ(k) and singlets by ω(k), upon which

−
∑

k≥1

g
(k)
V N̄γµv(2k−1)

µ N +
∑

k≥1

g
(k)
dV N̄γµν∂µv

(2k−1)
ν N (4.35)

separates to

−
∑

k≥1

(

g
(k)triplet
V

2

)

N̄γµρ(k)a
µ τaN +

∑

k≥1

(

g
(k)triplet
dV

2

)

N̄γµν∂µρ
(k)a
ν τaN (4.36)

and

−
∑

k≥1

(

Ncg
(k)singlet
V

2

)

N̄γµω(k)
µ N (4.37)

since the singlet does not have the derivative coupling in this approximation.

4.6 Axial vector mesons: a and f

Similarly, the axial vector mesons couplings

−
∑

k≥1

g
(k)
A N̄γµγ5v(2k)

µ N +
∑

k≥1

g
(k)
dA N̄γµνγ5∂µv

(2k)
ν N (4.38)

can be written as

−
∑

k≥1

(

g
(k)triplet
A

2

)

N̄γµγ5a(k)a
µ τaN −

∑

k≥1

(

Ncg
(k)singlet
A

2

)

N̄γµγ5f (k)
µ N (4.39)

since no derivative coupling exists for axial vectors in this approximation.
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5 Large Nc nucleon-nucleon potential

Phenomenologically the nucleon-nucleon (NN) potential is well described by one boson

exchange models. The long-range part of the NN potential is mostly due to the pion

exchange, while the short-range repulsion is governed by the vector meson exchange. The

scalar meson exchange is responsible for the intermediate-range of the potential. The

interaction Lagrangians for boson-nucleon couplings are, for pseudoscalar mesons:

LP = −gϕNN N̄ (x)γ5ϕ(x)N (x) , (5.1)

and for vector mesons:

LV = −gvNN N̄ (x)γµvµ(x)N (x) +
g̃vNN

2mN
N̄ (x)γµν∂µvν(x)N (x) , (5.2)

where mN is the nucleon mass. For the D4-D8 holographic model, we saw that the deriva-

tive coupling is absent for the isospin singlet vectors such as ω.9 The same is true of axial

vectors, so we have only [11]

LA = −gaNN N̄ (x)γµγ5aµ(x)N (x) . (5.3)

Note that we now use the convention for isovector bosons as ϕ = ~τ ·~ϕ, v = ~τ ·~v, and a = ~τ ·~a.
It is useful to compare our convention to that of Ericson and Weise [12], which is our

primary reference on one boson exchange potential. The Dirac matrices we used are such

that iγµ = γµ
Ericson−Weise, which brings us to the same convention for the nucleon field and

its free Lagrangian. In addition, we have reversed the overall sign of the couplings from

theirs as gϕNN = −gP , gρNN = −gV , and g̃ρNN = −gT , which is a matter of a common

sign convention on meson fields. We have no scalar field, so do not have the counterpart

of their gS .

The leading large Nc and large λ scaling is such that, for pseudo-scalars (ϕ = π, η′)

gπNN

2mN
MKK =

gtriplet
A

2fπ
MKK ≃ 2 · 3 · π√

5
×
√

Nc

λ
,

gη′NN

2mN
MKK =

Ncg
singlet
A

2fπ
MKK ≃

√

39

2
π2 × 1

λNc

√

Nc

λ
, (5.4)

for vectors (v = ρ(k), ω(k))

gρ(k)NN =
g
(k)triplet
V

2
≃

√
2 · 33 · π3 ψ̂(2k−1)(0) ×

1

Nc

√

Nc

λ
,

gω(k)NN =
Ncg

(k)singlet
V

2
≃

√
2 · 33 · π3 ψ̂(2k−1)(0) ×

√

Nc

λ
,

g̃ρ(k)NN

2mN
MKK =

g
(k)triplet
dV MKK

2
≃
√

22 · 32 · π3

5
ψ̂(2k−1)(0) ×

√

Nc

λ
, (5.5)

9 Note that, empirically, g̃/g = 3.7 − 6.1 for the ρ-meson (see for example [9]), while for ω-mesons the

ratio is close to zero, for instance g̃/g = 0.1 ± 0.2 [12].
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and for axial vectors (a = a(k), f (k)),

ga(k)NN ≡ g
(k)triplet
A

2
≃
√

22 · 32 · π3

5
ψ̂(2k)

′(0) ×
√

Nc

λ
,

gf(k)NN ≡ Ncg
(k)singlet
A

2
≃
√

39 · π5

2
ψ̂(2k)

′(0) × 1

λNc

√

Nc

λ
. (5.6)

Note that gρNN and g̃ρNN we have derived from the D4-D8 model are of the same sign,

which is consistent with experimental results.

5.1 Holographic nucleon-nucleon potential

In general, the one-boson exchange nucleon-nucleon potential can be written as

Vπ + Vη′ +

∞
∑

k=1

Vρ(k) +

∞
∑

k=1

Vω(k) +

∞
∑

k=1

Va(k) +

∞
∑

k=1

Vf(k) . (5.7)

We now borrow results on one-boson exchange potentials from ref. [10, 12] for various

mesons, and truncate to the leading contributions in 1/Nc and in 1/λ. (For more complete

forms of one boson exchange potential, we refer to appendix 10 of ref. [12].) In doing so,

we find that not all terms in the above expansion contribute at the leading order. The

leading contributions arise from the following four classes of couplings

gπNNMKK

2mN
∼ gω(k)NN ∼

g̃ρ(k)NNMKK

2mN
∼ ga(k)NN ∼

√

Nc

λ
, (5.8)

whereas gη′NN is further suppressed by 1/λNc and gρ(k)NN by 1/Nc.

For instance, the one pion exchange potential (OPEP) would be

Vπ =

(

gπNN

2mN

)2 m3
π

12π
[y0(mπr)~σ1 · ~σ2 + y2(mπr)S12]~τ1 · ~τ2 , (5.9)

where S12 = 3(~σ · r̂)(σ2 · r̂) − ~σ1 · ~σ2, and

y0(x) =
e−x

x
, y2(x) =

(

1 +
3

x
+

3

x2

)

e−x

x
. (5.10)

However, since we are working in the D4-D8 model where mπ = 0, the OPEP simplifies to

V holographic
π =

1

4π

(

gπNNMKK

2mN

)2 1

M2
KKr

3
S12 ~τ1 · ~τ2 . (5.11)

For the isospin singlet vector meson, namely ω(k)-mesons, the derivative coupling is absent

and the leading large λNc contribution is very simple,

V holographic

ω(k) =
1

4π
(gω(k)NN )2 mω(k) y0(mω(k)r). (5.12)
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For ρ(k) which are the isospin triplet vector mesons, the derivative coupling is dominant

over the minimal coupling. This also simplifies the potential quite a bit as

V holographic

ρ(k) ≃

1

4π

(

g̃ρ(k)NNMKK

2mN

)2 m3
ρ(k)

3M2
KK

[2y0(mρ(k)r)~σ1 · ~σ2 − y2(mρ(k)r)S12(r̂)] ~τ1 · ~τ2 . (5.13)

The contribution to Vρ(k) due to the minimal coupling gρNN are suppressed by addi-

tional 1/Nc.

The potential from exchange of isospin singlet axial vectors f (k) is suppressed by ad-

ditional 1/(λNc)
2 while triplet axial-vector mesons a(k) contributes [11]

V holographic

a(k) ≃
1

4π
(ga(k)NN )2

ma(k)

3
[−2y0(ma(k)r)~σ1 · ~σ2 + y2(ma(k)r)S12(r̂)] ~τ1 · ~τ2 . (5.14)

Finally note that the meson masses are all of order MKK and mρ(k) = mω(k) < ma(k) . The

vector masses and the axial vector masses alternate as k increases.

5.2 Behavior at r ∼ 1/MKK ≫ 1/
√
λMKK

When the distance in question is longer than 1/MKK, it suffices to consider contributions

from light mesons only,

V(p) ≡ V holographic
π +

p
∑

k=1

(

V holographic

ρ(k) + V holographic

ω(k) + V holographic

a(k)

)

, (5.15)

where the level p is determined by the short distance scale, down to which we are interested.

For instance, if we are interested in distance down to 1/(3MKK), p = 10 would suffice.

More generally, with large but finite λ, the smallest distance where one can still trust

this one-boson exchange potential is when the distance is comparable to the solitonic size

of the nucleon at ∼ 1/
√
λMKK. Around this scale, the current set-up, where one implicitly

assumes each of the unit baryon to be intact, breaks down and one must begin to consider

backreactions systematically. Thus, although the sum can formally extend to p = ∞, it

is in practice more sensible to cut it off at p ∼
√

λ/10, after taking into accounts various

order one factors.

The relevant (large λNc) pion coupling is

gπNN

2mN
MKK ≃ 8.43

√

Nc

λ
, (5.16)

while for (axial-)vector mesons we parameterize the relevant coupling as

gω(k)NN ≃ ξk

√

Nc

λ
,

g̃ρ(k)NN

2mN
MKK ≃ ζk

√

Nc

λ
, ga(k)NN ≃ χk

√

Nc

λ
. (5.17)

Coefficients, ξk, ζk, χk, are determined by ψ(2k−1)(0) and ψ′
(2k)(0), we list these values in

the following table 1, together with the masses (in unit of MKK) of the vector and the axial

vector mesons.
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k mω(k) = mρ(k) ψ̂(2k−1)(0) ξk ζk ma(k) ψ̂′
(2k)(0) χk

1 0.818 0.5973 24.44 8.925 1.25 0.629 9.40

2 1.69 0.5450 22.30 8.143 2.13 1.10 16.4

3 2.57 0.5328 21.81 7.961 3.00 1.56 23.3

4 3.44 0.5288 21.64 7.901 3.87 2.02 30.1

5 4.30 0.5270 21.57 7.874 4.73 2.47 36.9

6 5.17 0.5261 21.52 7.860 5.59 2.93 43.8

7 6.03 0.5255 21.50 7.852 6.46 3.38 50.5

8 6.89 0.5251 21.48 7.846 7.32 3.83 57.3

9 7.75 0.5249 21.48 7.843 8.19 4.29 64.1

10 8.62 0.5247 21.47 7.840 9.05 4.74 70.9

Table 1. Numerical results for masses and coupling constants for spin one mesons interacting with

nucleons.
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Figure 1. A plot of large Nc nucleon-nucleon potential, truncated at p = 10, along its most

attractive channel, namely isospin singlet, σ-spin triplet, and even spatial angular momentum with

S12 = 2. The horizontal axis is for the distance, rMKK, while the potential energy along the vertical

axis is in unit of MKKNc/4πλ.

In figure 1, we display the shape of the large Nc potential with p = 10 for the iso-singlet

sector with total angular momentum one and total spin one. By superselection rules, the

spatial angular momentum is a mixture of 0 and 2, and effectively we have

S12 = 2, ~τ1 · ~τ2 = −3, ~σ1 · ~σ2 = 1. (5.18)

This is the only channel which is attractive at long distance. All other channels are repul-

sive. See section 7 for more discussion. The minimum of the potential is located around

5.5/MKK which is a little larger than one fermi if we adoptMKK ≃ 0.94GeV . Toward r = 0,

the potential becomes repulsive very quickly, and this is consistent with the expected short

distance behavior we will see in next subsection.
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If we continue past toward small r beyond the region of validity (set by the integer

p), the potential actually turns attractive again very sharply. However this is an artifact

of cutting off the series at finite number of KK modes, and should not be taken seriously.

Indeed, this unphysical turnaround can be seen to occur right below 1/3MKK where we

expect the p = 10 formula to become untrustworthy, at least for arbitrarily large λ. For

finite λ, however, it turns out that there is a very simple remedy of this problem. The

unphysical turnaround turns out to be a combined effect of the truncation and certain finite

λ correction that we ignored in section 4. By choosing an optimal value of p in accordance

with λ, one can easily restore physical sensible short-distance behavior as we explain in

next subsection.

5.3 Coulomb repulsion at short distance and finite λ corrections to the large

Nc potential

When the distance between the pair of nucleon is much smaller than 1/MKK and com-

parable to 1/
√
λMKK, the above expressions must be summed over all mesons. When λ

is sufficiently large, however, it is clear where the leading contribution comes from. The

holographic picture of the solitonic baryon involves an instanton soliton with a unit Pon-

tryagin number dressed with Abelian electric charge. When the net soliton configuration

is smaller than the curvature scale of the background holographic geometry, 1/MKK, the

instanton part of the soliton will behave like that of ordinary instanton on R4 with scale

invariance.

This implies that the leading potential energy beyond the rest masses of the two cores

should come from the five-dimensional electrostatic energy associated with the Abelian

electric charge. Roughly each soliton hasNc unit of electric charges and the five dimensional

electric coupling scales as 1/
√
λNc, and this gives repulsive potential

∼ Nc

λ

1

MKKr2
. (5.19)

Details of this potential are, however, more complicated. The electric charge density is

basically the same as the Pontryagin density, so the precise form of the two-instanton

solution enters the potential. In particular the relative spatial/gauge orientation of the

two-instanton configuration must enter the potential, predicting a particular spin/isospin-

dependence.

Clearly, the precise and quantitative structure of the short-distance potential cannot be

captured by the our one-boson exchange potential since the underlying formulation for the

latter ignores the core shape of the soliton other than its spin/isospin structures, whereas

in the short-distance ∼ 1/
√
λMKK the potential energy is of order Nc and is comparable

to the electric part of the soliton energy. In order to compute the precise structure of

this short distance behavior, one should at least start from the full two-instanton solution,

available in the literature either via ADHM construction or in the form of Jackiw-Nohl-

Rebbi (JNR) ansatz [24].10 Unfortunately, however, this approach is difficult to extend

10While our work was in progress, there appeared two related papers [25, 26] that share some common

– 19 –



J
H
E
P
0
4
(
2
0
0
9
)
0
8
6

1 2 3 4 5

-3000

-2000

-1000

0

1000

2000

MKKr

Figure 2. This plot shows the large Nc potential V(p) at short distance where the naive large λNc

formula combined with the truncation becomes untrustworthy. Without the finite λ-correction, the

truncated potential turns attractive again at a short distance of order rMKK ∼ 3/p. The figure is

for p = 10.

beyond very short distance, since the analog of AHDM or JNR is not available in a curved

background.

Independent of this, as a self-consistency check, we wish to understand how the sum

over the KK tower of mesons end up producing 1/r2 behavior at short distance. The leading

short-distance power from individual meson exchange is 1/r3. Since KK modes sum over

such powers (after taking into account the coefficients carefully) cannot make a 1/r2 form,

somehow 1/r3 terms must cancel in the full summation over mesons. For instance, pions

contributes ≃ 71Nc/4πλ to the coefficient, whereas the ρ and the first a meson contribute

≃ −80Nc/4πλ and ≃ 57Nc/4πλ, respectively. Continuing this fashion, one can see that the

pion contribution is gradually eaten away by the alternating contributions from the pairs

(ρ(k), a(k)). However, the sum up to p = 10 can be seen to weaken ∼ 1/r3 from the pion

exchange only by a factor of half, which is not enough for the anticipated cancellation. In

numerical plot with p = 10, shown in figure 2, this manifests as an unphysical turnaround

at rMKK ≃ 3/10.

One reason behind this deficiency lies with the leading λNc estimate we found in

section 4. While most of estimate there are safe in the large Nc limit, the quantities C±
n

are actually correct only up to ∼ 1/λ corrections. This comes about because

2π2ρ2
baryon

3e(w)2
≃
ρ2
baryon

6
×mB(w) ×

(

1 −
√

2 · 35 · π2/5

λ
+O(λ−2)

)

, (5.20)

goal with our work. The latter in particular worked out a precise short-distance form of the potential using

ADHM construction of two-instanton.
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Figure 3. This plot shows the large Nc potential V(p=10) now with 1/λ-corrected axial vector

couplings at λ = 1100. The unphysical turnaround at ∼ 0.3MKK disappeared completely, allowing

a smooth transition to the short distance 1/r2 repulsive core.

implying that our numbers for ga(k)NN were overestimated and we must adjust

ga(k)NN → ga(k)NN ×
(

1 −
√

2 · 35 · π2/5+

λ
+O(λ−2)

)

, (5.21)

if we wish to understand finite λ cases, regardless of Nc ≫ 1.

Let us note that the smallest distance for which we can trust the truncation up to the

p-th pair is around rMKK ∼ 3/p. Comparing this distance against the solitonic baryon

size, below which the effective theory we used does not make much sense to begin with,

we find that such a truncated potential should be a sensible approximation if we choose

p ∼
√

λ/10. For larger p, the idea of point-like nucleon fails as far as interaction with

heavier mesons are concerned, while for smaller p the potential V(p) fails at distances far

larger than the individual baryon size.

For λ ≃ 1000, one may thus hope that the choice p = 10 should be an optimal

one. As we saw above, however, the naive formula for the potential exhibits that the

potential begins to fails dramatically at rMKK = 3/p, by turning strongly attractive again.

Although there is no strong inconsistency with this (since the potential failed where it

is expected to fail), it looks a little suspicious. The point is that although λ ≃ 1000

seems large, the correction (5.21) to the axial vector couplings represents roughly more

than 2% reduction and cannot be neglected. What one should do is to correct ga(k)NN as

in (5.21) and reconstruct the potential. Indeed, the numerical estimate shows an almost

complete cancellation of short distance 1/r3 when we take p = 10 for the case of λ = 1100.

Figure 3 shows the corrected potential in this case, where the unphysical turnaround at

rMKK ∼ 3/10 disappeared. In the case of λ ∼ 1000, at least, the minimal choice for

truncation, p = 10, was also effective. Once this leaves behind 1/r2 terms as the leading
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short-distance behaviors, the appearance of 1/r2 from the latter via KK mode sum, where

the vectors and the axial vectors contributes with the alternating sign, follows easily.

For larger λ, the reduction of ga(k)NN would be smaller, but at the same time we must

sum over more mesons in order to make the potential trustworthy down to the distance

comparable to the soliton core size. One may speculate that the optimal choice is again to

sum up to p ∼
√

λ/10. However, the couplings for large k are inherently ambiguous since

it depends more and more sensitively to, for example, the precise functional form of the

coefficient of B̄FB. This is because the necessary mesonic wavefunction ψ(n)’s are more

and more widespread, which also makes the couplings prone to systematic errors from how

the numerical estimate is cut-off far away from w = 0.

6 Nucleon-nucleon potential for realistic λ and Nc

If one wishes to understand real QCD with Nc = 3, one must consider a different regime.

For instance, we neglected Vη′ on account of the small ratio

gη′NN

gπNN
∼
√

37 · 5 · π2

23

1

λNc
≪ 1 when λNc ≫ 1 (6.1)

in the holographic limit. Yet, if we consider Nc = 3 and λ ≃ 17 (determined by measured

values of fπ ), we find the ratio to be about 2 and is hardly ignorable. The estimates here

themselves are no longer reliable since we used large λNc limit, but this comparison clearly

shows us that we cannot expect any small parameter. This is in fact a generic problem in

going to the realistic limit.

In computing Feynman diagrams and extracting nonrelativistic potential, another

small parameter is p/mN where p is the spatial momentum of the meson being exchanged.

However, when translated to real space, this ratio can show up either as m/mN or as

1/rmN , which is problematic when the meson mass m exceeds the nucleon mass. Thus,

contribution from exchange of heavy mesons cannot be included reliably, forcing us to cut

down to pions, η′, ρ, and ω. Thanks to the universal suppression ∼ e−mr for heavy meson

processes, this is a good approximation as long as we are interested in distances strictly

larger that 1/MKK.

The relevant Nucleon-Nucleon potential is then

V = Vπ + Vη′ + Vρ(1) + Vω(1) , (6.2)

where individual term must be computed as a series expansion of m/mN . Actually, the

exchange of vector mesons generates a correction to the kinetic term as well, the two-body

Hamiltonian for a pair of nucleons contains the relative part of the Hamiltonian,

H = −
(

1

mN
+ ∆

)

∇2 + V (6.3)

with

∆ =
3m(1)

16π

(

g2
ω(1)NN

+ g2
ρ(1)NN

~τ1 · ~τ2
)

(

m(1)

mN

)2

y0(m(1)r) , (6.4)
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where m(1) ≡ mω(1) = mρ(1) . In the attractive channel, ~τ1 · ~τ2 = −3, as we will see later,

(gω(1)NN/gω(1)NN )2 ≃ 14, so the effective reduced mass of this two body system becomes

smaller as the distance becomes small.

Let us turn to the potential. Vπ was already given in eq. (5.11), while others can be

inferred from ref. [12]. The contribution from the trace part is essentially the same as the

massive pion case (5.9) except the SU(2) generators ~τ1 · ~τ2 are absent

Vη′ =
1

4π

(

gη′NN

2mN
MKK

)2 m2
η′

M2
KK

mη′

3
[y0(mη′r)~σ1 · ~σ2 + y2(mη′r)S12] . (6.5)

The mass of η′ is generated by the U(1) axial anomaly, and was computed by Sakai and Sug-

imoto,

mη′ =
λMKK√

27π2

√

NF

Nc
. (6.6)

Vρ(1) is considerably more involved than V holographic

ρ(1) :

Vρ(1) =
m(1)

4π

{[

g2
ρ(1)NN

(

1 − 1

4

m2
(1)

m2
N

)

+ gρ(1)NN

(

g̃ρ(1)NN

2mN
MKK

)

m(1)

mN

m(1)

MKK

+
1

4

(

g̃ρ(1)NN

2mN
MKK

)2(m(1)

mN

)2( m(1)

MKK

)2]

y0(m(1)r)

+
1

3

m2
(1)

M2
KK

[(

MKK

2mN
gρ(1)NN +

g̃ρ(1)NN

2mN
MKK

)2

+
1

8

(

g̃ρ(1)NN

2mN
MKK

)2(m(1)

MN

)2][

2y0(m(k)r)~σ1 · ~σ2 − y2(m(k)r)S12(r̂)

]

−
(

m(1)

mN

)2 [3

2
g2
ρ(1)NN

+ 2gρ(1)NN g̃ρ(1)NN +
3

2

(

g̃ρ(1)NN

2mN
MKK

)2( m(1)

MKK

)2]y1(m(1)r)

m(1)r
~L · ~S

+

(

m(1)

mN

)4 [ 1

16
g2
ρ(1)NN

+
1

2
gρ(1)NN g̃ρ(1)NN +

1

2
g̃2
ρ(1)NN

]

y2(m(1)r)

m2
(1)r

2
Q12

}

× ~τ1 · ~τ2 , (6.7)

with

~S =
1

2
(~σ1 + ~σ2) ,

Q12 =
1

2

(

(~σ1 · ~L)(~σ2 · ~L) + (~σ2 · ~L)(~σ1 · ~L)
)

, (6.8)

and the spatial angular momentum ~L. Finally, Vω(1) is essentially of the same form as Vρ(1) ,
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except that g̃ω(1)NN = 0 and ~τ1 · ~τ2 is absent,

Vω(1) =
m(1)

4π
g2
ω(1)NN

{(

1 − 1

4

m2
(1)

m2
N

)

y0(m(1)r)

+
1

12

(

m(1)

mN

)2 [

2y0(m(1)r)~σ1 · ~σ2 − y2(m(1)r)S12(r̂)

]

−3

2

(

m(1)

mN

)2 y1(m(1)r)

m(1)r
~L · ~S +

1

16

(

m(1)

mN

)4 y2(m(1)r)

m2
(1)r

2
Q12

}

. (6.9)

These are the complete expressions up to the quartic order in terms of spatial momenta of

individual nucleons.

For Nc = 3 and λ ≃ 17, we found the following numbers that determine the cou-

plings here,

4C+
0 ≃ 0.697, 2A+

0 ≃ 0.136, A+
1 ≃ 5.93, 2B+

1 ≃ 7.04

MKK
, 2C+

1 ≃ −1.22 (6.10)

and

fπ ≃ 0.0975MKK, m(1) ≡ mρ(1) = mω(1) ≃ 0.818MKK, mη′ ≃ 0.85MKK. (6.11)

The mass mN has an inherent ambiguity since it would be additively renormalized by

massive excitations around the soliton. Our definition of the nucleon mass kept only

one such massive mode, namely the position along w-direction, and according to this

prescription, we find

mN ≃ 1.93MKK. (6.12)

Unfortunately, the scale of MKK that fits the physical nucleon mass is about ∼ 500MeV,

as opposed to the one needed to fit the physical ρ meson mass at ∼ 940MeV. This

discrepancy between the mesonic and the baryonic scales was previously observed both in

the D4-D8 model in a slightly different comparison [5] and also in the so-called bottom-

up approach [28], and appears unavoidable in the gravity approximation to the bulk side.

We will proceed with these numbers, nevertheless. The couplings that enter the above

potential are11

gπNN

2mN
MKK =

4C+
0 + 2A+

0

2fπ
MKK ≃ 4.27,

gη′NN

2mN
MKK =

2A+
0 ·Nc

2fπ
MKK ≃ 4.18,

gρ(1)NN =
A+

1 + 2C+
1

2
≃ 2.36, gω(1)NN =

A+
1 ·Nc

2
≃ 8.90,

g̃ρ(1)NN

2mN
MKK =

2B+
1 ·MKK

2
≃ 7.04. (6.13)

Detailed study of this case will be reported elsewhere.

11It has been observed previously that next subleading correction of some of the operators may involve

the simple shift Nc → Nc + 2 in the leading expressions. This, for example, allows a very good match of

gπNN with experiment. The origin of this shift, originally suggested by the constituent quark models, is

not clear from this approach. Here, we chose not to implement this shift but readers should be aware that

terms from B̄FB may be affected, leading to quantitatively different numbers.
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Figure 4. A plot of the nucleon-nucleon potential, with Ncλ = 50 and Nc = 3. We again drew

the potential for the isospin singlet, σ-spin triplet, and S12 = 2 eigensector, although for this finite

λNc case we should expect different S12 eigensectors to mix in. This plot is only for the purpose

of illustrating the general trend. The horizontal axis is rMKK, while the vertical potential energy

is in unit of MKK/4π.

7 Holographic deuteron: large Nc results

In this final section, we explore some basic aspects of deuteron physics with the

NN potential

V holographic
π +

10
∑

k=1

(

V holographic

ρ(k) + V holographic

ω(k) + V holographic

a(k)

)

(7.1)

in the large λ and Nc limit. To distinguish this from physical deuteron, we refer to them

as holographic deuterons.

For a bound state, we need to focus on the long distance attractive channel. The large

Nc potential has a simple spin and flavor structure as

V holographic = VC + (V σ
T ~σ1 · ~σ2 + V S

T S12)~τ1 · ~τ2. (7.2)

The massless pion exchange, the dominant contribution in long distance, contributes only

to V S
T and positively, so an attractive channel requires S12~τ1 · ~τ2 < 0. Using the fact that

S12 acting on σ-spin singlet vanishes identically, and that the nucleons are fermions, this

forces the isospin singlet (~τ1 · ~τ2 = −3) and the σ−triplet (~σ1 · ~σ2 = 1) channel with even

spatial angular momentum. The lowest total angular momentum possible is then J = 1,

and the positive S12 eigensector has the following spatial angular momentum mix as

|L = 1〉 +
√

2|L = 0〉√
3

. (7.3)

In this eigensector, S12 = 2. The figure 1 is the plot of the potential in this sector, whose

classical minimum occurs at

rmin ≃ 5.53

MKK
, V (rmin) ≃ −0.0944MKK

Nc

λ
. (7.4)
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Note that the binding potential is very shallow. Recall that in the large λNc limit, MKK

is most conveniently determined by the vector meson scale to be around 0.94 GeV. Among

various scales that enter the baryon energy, we have the hierarchies,

mN ∼ mclassical
B ∼ λNc ≫ ECoulomb ∼ Nc ≫ |V (rmin)| ∼

Nc

λ
. (7.5)

The middle measures the energy related to the classical deformation of the individual

baryon away from the self-dual soliton, while the last measures the binding energy of

the nuclei.

The fact that the nuclei biding energy is small, which is also borne out in real world,12

is interesting from the standpoint of the holographic QCD as well. The stringy picture

of the baryon says that the individual baryon can be viewed as a D4 brane wrapped on

the compact S4 of the dual geometry [1, 27]. What we computed here is essentially the

potential between two such objects separated along the noncompact R3. The binding

energy is positive but suppressed relative to the individual rest mass by 1/λ2, indicating

very weak interactions. In terms of the warped string scale, α′
warped, this power is equals

(α′
warpedM

2
KK)2. Although the significance of this particular power is unclear to us, it

does show that the two wrapped D4 branes are almost non-interacting at long distances.

This seems to suggest that the object underlying baryons may remain close to its original

BPS nature, despite the supersymmetry breaking background of scale MKK and high mass

∼ λNcMKK, which is well beyond the cut-off scale MKK, and may eventually explain why

such a high mass object is well-described by this D4-D8 holographic QCD.

8 Concluding remarks

In this work, we computed the nucleon-nucleon potential in the D4-D8 holographic QCD,

which is generated by exchange of five-dimensional flavor gauge field. In four dimensional

picture, this amounts to exchange of massless pseudo-scalars and an infinite tower of spin

one mesons. In the large λNc limit, it is sensible to sum up to first ∼
√

λ/10 vector

and axial vector meson pairs, although one may choose to cut it shorter according to the

shortest distance scale interested. This prescription also gives whereto glue the repulsive

short distance regime to the more complicated intermediate and long distance regime. Some

rudimentary aspects of deuteronic bound state is explored for large Nc case. Consideration

of deuteron for realistic QCD regime will be explored elsewhere.

We hope this work will provide a more practical starting point for exploration of

how holographic QCD fares against experimental data, part of which comes from nucleon-

nucleon scattering amplitudes. Admittedly, this would involved huge extrapolation to

Nc = 3 and λ ≃ 17, where the holographic approach is hardly justifiable by the first

principle. But, in the absence of any other honest derivation of nucleon-nucleon potential,

our result should be at least tested against data. In this work, we did not attempt to

analyze realistic QCD regime and concentrated mostly on large Nc limit. We wish to come

back later to the Nc = 3 potential of section 6, and explore its consequences.

12The physical deuteron has a binding energy of 2.2 MeV [29], which is about 0.12% of its rest mass.
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Another important application of this work would be in understanding dense matter

system, such as neutron stars, where the correct equation of state is of some importance.

In dealing with such a dense system from the holographic QCD, baryon density itself were

often treated as external input in the form of delta-function density in five-dimensions. We

hope our nucleon-nucleon potential would allow a more refined approach.

Acknowledgments

P.Y. is grateful to Lenny Susskind for a comment that motivated this work, and also

Deog-Ki Hong, Shamit Kachru, Mannque Rho, and Ho-Ung Yee for discussions. He also

thanks SITP of Stanford University for hospitality and generous support. Y.K. thanks

Hyun-Chul Kim for useful comments. Y.K. acknowledges the Max Planck Society(MPG)

and the Korea Ministry of Education, Science and Technology(MEST) for the support of

the Independent Junior Research Group at the Asia Pacific Center for Theoretical Physics

(APCTP). S.L. is supported in part by the KOSEF Grant R01-2006-000-10965-0 and the

Korea Research Foundation Grant KRF-2007-331-C00073. P.Y. is supported in part by

the Science Research Center Program of KOSEF (CQUeST, R11-2005-021), the Korea Re-

search Foundation (KRF-2007-314-C00052), and by the Stanford Institute for Theoretical

Physics (SITP Quantum Gravity visitor fund).

References

[1] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD,

Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES]; More on a holographic dual

of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].
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